d03 — Partial Differential Equations d03plc

NAG C Library Function Document

nag pde parab 1d_cd_ode (d03plc)

1 Purpose

nag pde parab_1d cd ode (d03plc) integrates a system of linear or nonlinear convection-diffusion
equations in one space dimension, with optional source terms and scope for coupled ordinary differential
equations (ODEs). The system must be posed in conservative form. Convection terms are discretized
using a sophisticated upwind scheme involving a user-supplied numerical flux function based on the
solution of a Riemann problem at each mesh point. The method of lines is employed to reduce the partial
differential equations (PDEs) to a system of ODEs, and the resulting system is solved using a backward
differentiation formula (BDF) method or a Theta method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1ld_cd_ode (Integer npde, double *ts, double tout,

void (*pdedef) (Integer npde, double t, double x, const double ul],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double ¢[], double d[], double s[], Integer xires,
Nag_Comm *comm) ,

void (*numflx) (Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[], const double uright[],
double flux[], Integer *ires, Nag_Comm *commNag_DO3_Save *saved),

void (*bndary) (Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires, Nag_Comm *comm),

double ull, Integer npts, const double x[], Integer ncode,

void (*odedef) (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double r[], Integer xires,
Nag_Comm *comm) ,

Integer nxi, const double xi[], Integer neqn, const double rtol[],

const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], double rsave[], Integer Irsave, Integer isave[],
Integer lisave, Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_DO03_Save *saved, NagError *fail)

3 Description

nag_pde parab 1d cd ode (d03plc) integrates the system of convection-diffusion equations in conserva-
tive form:

npde
oU; 8F oD;
E P; =Ci—+S; 1
TR 8t Ox " Ox + 50 (1)
or the hyperbolic convection-only system:
ou; OF;
1 1 — 0 2
ot Ox ’ @)

fori=1,2,...,npde, a<x<b, >ty where the vector U is the set of PDE solution values

[NP3660/8] d03ple. 1

d03plc NAG C Library Manual

T
U(x7 t) = |:Ul (x7 t)> ey Unpde(xa t)j| .
The optional coupled ODEs are of the general form
R(t,V,V,&,U"Us,U;) =0, i=1,2,... ncode, (3)

where the vector V is the set of ODE solution values

VW) = [710 Va0

V denotes its derivative with respect to time, and U, is the spatial derivative of U.

In (1), P;;, F; and C; depend on x, ¢, U and V; D; depends on x, ¢, U, U, and V; and S; depends on x, ¢,
U, V and linearly on V. Note that P, F,, C; and S, must not depend on any space derivatives, and P;

ox

7/"

and S;

J°

F;, C; and D; must not depend on any time derivatives. In terms of conservation laws, F;,
are the convective flux, diffusion and source terms respectively.

In (3), £ represents a vector of 7 spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to PDE spatial mesh points. U", U; and U} are the functions U,
U, and U, evaluated at these coupling points. Each R; may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R=L—-MV —NU;, (4)

T
where R = [Rl, o 7Rnc0de:| , L is a vector of length ncode, M is an ncode by ncode matrix, N is an

ncode by (né X npde) matrix and the entries in L, M and N may depend on #, &, U*, Uy and V. In
practice you only need to supply a vector of information to define the ODEs and not the matrices L, M and
N. (See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from ¢, to 7,,, over the space interval ¢ < x < b, where a = x; and b = x,,; are

npts

the leftmost and rightmost points of a user-defined mesh xi,x,,.. The initial values of the

functions U(x,¢) and V' (¢) must be given at ¢ = ¢,.

R xnpts‘

The PDEs are approximated by a system of ODEs in time for the values of U; at mesh points using a
spatial discretization method similar to the central-difference scheme used in nag pde parab 1d fd
(d03pcc), nag pde parab 1d fd ode (d03phc) and nag pde parab 1d fd ode remesh (d03ppc), but with
the flux F; replaced by a numerical flux, which is a representation of the flux taking into account the
direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central
differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct
direction of upwinding is automatically achieved.

The numerical flux vector, F; say, must be calculated by you in terms of the left and right values of the
solution vector U (denoted by U; and Up respectively), at each mid-point of the mesh

X1 = (xj_l —i—xj) /2, for j=2/3 ... npts. The left and right values are calculated by

nag pde parab_1d cd ode (d03plc) from two adjacent mesh points using a standard upwind technique
combined with a Van Leer slope-limiter (see LeVeque (1990)). The physically correct value for F; is
derived from the solution of the Riemann problem given by

ou; OF;
1 1 — 0’ (5)
ot Oy
where y = x — X1, i.e., y = 0 corresponds to x = X1, with discontinuous initial values U = U, for y < 0

and U = Uy, for y > 0, using an approximate Riemann solver. This applies for either of the systems (1) or
(2); the numerical flux is independent of the functions P;;, C;, D; and S;. A description of several
approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al (1989). Roe’s scheme
(see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs U, + F, = 0 or equivalently U, + AU, = 0. Provided the system is linear in U, i.e., the
Jacobian matrix 4 does not depend on U, the numerical flux F is given by

d03ple.2 [NP3660/8]

d03 — Partial Differential Equations d03plc

npde
F=3Fp+Fp) - %Z o[Arlex, (6)
k=1

where F; (Fp) is the flux F' calculated at the left (right) value of U, denoted by U; (Up); the A\, are the
eigenvalues of A4; the ¢, are the right eigenvectors of A4; and the oy are defined by

npde

Ur— UL = oyes (7)
k=1

An example is given in Section 9 and in the nag pde parab _1d cd (d03pfc) documentation.
If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions P; j,
numerical flux F ; must be supplied in a separate user-supplied function numflx. For problems in the form
(2), the actual argument dO3plp may be used for pdedef (d03plp is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation for
details). dO3plp sets the matrix with entries P;; to the identity matrix, and the functions C;, D; and S, to
Zero.

C;, D; and S; (but not F';) must be specified in a function pdedef supplied by you. The

The boundary condition specification has sufficient flexibility to allow for different types of problems. For
second-order problems, i.e., D; depending on U,, a boundary condition is required for each PDE at both
boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary conditions for each PDE, that is npde
boundary conditions in total. However, in common with most discretization schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by you, i.e., a total of npde conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general you should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain (note that when using banded matrix algebra the fixed bandwidth means that
only linear extrapolation is allowed, i.e., using information at just two interior points adjacent to the
boundary). For problems in which the solution is known to be uniform (in space) towards a boundary
during the period of integration then extrapolation is unnecessary; the numerical boundary condition can be
supplied as the known solution at the boundary. Another method of supplying numerical boundary
conditions involves the solution of the characteristic equations associated with the outgoing characteristics.
Examples of both methods can be found in Section 9 and in the nag pde parab 1d cd (d03pfc)
documentation.

The boundary conditions must be specified in a user-supplied function bndary in the form
Gi(x,t,U,V,V) =0 atx=a, i=1,2,...,npde, (8)
at the left-hand boundary, and
Gi(x,t,U,V,V)=0 atx=b, i=12... npde, 9)
at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the function bndary, but they can
be calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

[NP3660/8] d03plec.3

d03plc NAG C Library Manual

The algebraic-differential equation system which is defined by the functions R; must be specified in a
function odedef supplied by you. You must also specify the coupling points ¢ (if any) in the array xi.

The problem is subject to the following restrictions:

1 In (1), f/j(t), for j=1,2,...,ncode, may only appear linearly in the functions §;, for

i=1,2,...,npde, with a similar restriction for G,~L and GZR;
(i) P;j, F;, C; and S; must not depend on any space derivatives; and P;
on any time derivatives;

j» Fi» C; and D; must not depend

(iii) 79 < oy SO that integration is in the forward direction;

(iv) The evaluation of the terms P;;, C;, D; and §; is done by calling the function pdedef at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x,xs, . . ., Xppes

(v) At least one of the functions P;; must be non-zero so that there is a time derivative present in the PDE
problem.

In total there are npde x npts + ncode ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton’s method and
functional iteration (see Berzins et al. (1989)).

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375-397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational
Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws Birkhouser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63-99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.
Phys. 43 357-372

Sod G A (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws J. Comput. Phys. 27 1-31

5 Arguments

l: npde — Integer Input
On entry: the number of PDEs to be solved.
Constraint: npde > 1.

2: ts — double * Input/Output
On entry: the initial value of the independent variable .
On exit: the value of ¢ corresponding to the solution values in u. Normally ts = tout.

Constraint: ts < tout.

3: tout — double Input

On entry: the final value of ¢ to which the integration is to be carried out.

d03plc.4 [NP3660/8]

d03 — Partial Differential Equations d03plc

4: pdedef — function, supplied by the user External Function

pdedef must evaluate the functions P;;, C;, D; and S; which partially define the system of PDEs.
P;; and C; may depend on x, ¢, U and V; D; may depend on x, ¢, U, U, and V; and §; may depend
onx, t, U, V and linearly on V. pdedef is called approximately midway between each pair of mesh
points in turn by nag_pde parab_1d cd ode (d03plc). The actual argument dO3plp may be used for
pdedef for problems in the form (2) (d03plp is included in the NAG C Library; however, its name
may be implementation-dependent: see the Users’ Note for your implementation for details).

Its specification is:

void pdedef (Integer npde, double t, double x, const double ul],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double ¢[], double d[], double s[], Integer xires,
Nag_Comm *comm)

1: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: x — double Input

On entry: the current value of the space variable x.

4: u[npde] — const double Input
On entry: ufi — 1] contains the value of the component U;(x,), for i =1,2,..., npde.

5: ux[npde] — const double Input

oU,(x,t
On entry: ux[i — 1] contains the value of the component %, fori=1,2,...,npde.
X

6: ncode — Integer Input
On entry: the number of coupled ODEs in the system.

7: v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2, ..., ncode.

8: vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.

Note: V/;(¢), for i=1,2,...,ncode, may only appear linearly in S;, for j=1,2,... npde.

9: p[npde x npde] — double Output

On exit: p[npde x j + i must be set to the value of P;;(x,¢,U,U,), for
i,j=1,2,...,npde.

10: c[npde] — double Output
On exit: ¢[i — 1] must be set to the value of C;(x,t,U, V), for i =1,2,...,npde.

11: d[npde] — double Output

On exit: d[i — 1] must be set to the value of D;(x,t,U,U,, V), for i =1,2,..., npde.

[NP3660/8] d03ple.5

d03plc NAG C Library Manual

12: s[npde] — double Output

On exit: s[i — 1] must be set to the value of S;(x,¢,U,V, V), for i=1,2,...,npde.

13: ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d cd ode (d03plc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

14: comm — Nag Comm * Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d cd ode
(d03plc) these pointers may be allocated memory by the user and initialized with
various quantities for use by pdedef when called from nag pde parab 1d cd ode
(d03plc).

5: numflx — function, supplied by the user External Function

numflx must supply the numerical flux for each PDE given the left and right values of the solution
vector u. numflx is called approximately midway between each pair of mesh points in turn by
nag pde parab _1d cd ode (d03plc).

Its specification is:

void numflx (Integer npde, double t, double X, Integer ncode, const double v[],
const double uleft[], const double uright[], double flux[], Integer x*ires,
Nag_Comm *comm, Nag_DO3_Save *saved)

I: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: x — double Input

On entry: the current value of the space variable x.

4: ncode — Integer Input

On entry: the number of coupled ODEs in the system.

d03plec.6 [NP3660/8]

d03 — Partial Differential Equations d03plc

10:

11:

v[ncode] — const double Input

On entry: v[i — 1] contains the value of the component V,(¢), for i = 1,2,..., ncode.

uleft[npde] — const double Input
On entry: uleft[i — 1] contains the left value of the component U,;(x), for

i=1,2,..., npde.

uright[npde] — const double Input
On entry: uright[i — 1] contains the right value of the component U,(x), for
i=1,2,...,npde.

flux[npde] — double Output

On exit: flux[i — 1] must be set to the numerical flux £, for i = 1,2,... npde.

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d cd ode (d03plc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag Comm; the following members are relevant to numfix.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d cd ode
(d03plc) these pointers may be allocated memory by the user and initialized with
various quantities for use by numflx when called from nag_pde parab _1d cd ode
(d03plc).

saved — Nag D03 Save * Communication Structure

If numfix calls one of the approximate Riemann solvers nag pde parab 1d euler roe
(d03puc), nag_pde parab 1d_euler osher (d03pvc), nag_pde parab 1d euler hll
(d03pwc) or nag_pde parab_1d euler exact (d03pxc) then saved is used to pass data
concerning the computation to the solver. You should not change the components of
saved.

6: bndary — function, supplied by the user External Function

bndary must evaluate the functions G* and G® which describe the physical and numerical boundary
conditions, as given by (8) and (9).

Its specification is:

[NP3660/8]

d03plc.7

do3plc

NAG C Library Manual

d03plc.8

void bndary (Integer npde, Integer npts, double t, const double x[],

10:

11:

const double u[], Integer ncode, const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires, Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

npts — Integer Input

On entry: the number of mesh points in the interval [a, b].

t — double Input

On entry: the current value of the independent variable .

x[npts] — const double Input
On entry: the mesh points in the spatial direction. x[0] corresponds to the left-hand
boundary, a, and x[npts — 1] corresponds to the right-hand boundary, b.

u[npde X npts] — const double Input

On entry: ulnpde x j + i| contains the value of the component U,(x,) at x = x[j — 1], for
i=1,2,...,npde; j=1,2,... npts.

Note: if banded matrix algebra is to be used then the functions G+ and GX may depend on
the value of Uj(x,¢) at the boundary point and the two adjacent points only.

ncode — Integer Input

On entry: the number of coupled ODEs in the system.

v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2,..., ncode.
vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2, ..., ncode.

Note: V,(1), for i = 1,2,...,ncode, may only appear linearly in Gf and GJR, for
j=1,2,... npde.
ibnd — Integer Input
On entry: specifies which boundary conditions are to be evaluated.
ibnd =0

bndary must evaluate the left-hand boundary condition at x = a.
ibnd # 0

bndary must evaluate the right-hand boundary condition at x = b.

g[npde] — double Output
On exit: g[i — 1] must contain the ith component of either G,L or Gf in (8) and (9),
depending on the value of ibnd, for i =1,2,... npde.

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

[NP3660/8]

d03 — Partial Differential Equations d03plc

10:

11:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d cd ode (d03plc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

12 ecomm — Nag Comm * Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d cd ode
(d03plc) these pointers may be allocated memory by the user and initialized with
various quantities for use by bndary when called from nag_pde parab _1d cd ode
(d03plc).

u[neqn| — double Input/Output
On entry: the initial values of the dependent variables defined as follows:

ulnpde x (j — 1) +i — 1] contain U,(x;, %), for i=1,2,...,npde; j=1,2,... npts and
u[npts x npde + k — 1] contain V;(¢y), for k =1,2,..., ncode.

On exit: the computed solution U, (xj,t), for i=1,2,...,npde; j =1,2,... npts, and V,(¢), for
k=1,2,...,ncode, all evaluated at ¢t = ts.

npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

Constraint: npts > 3.

x[npts] — const double Input

On entry: the mesh points in the space direction. x[0] must specify the left-hand boundary, a, and
x[npts — 1] must specify the right-hand boundary, b.

Constraint: X[0] < x[1] < --- < x[npts — 1].

ncode — Integer Input
On entry: the number of coupled ODE components.

Constraint: ncode > 0.

odedef — function, supplied by the user External Function

odedef must evaluate the functions R, which define the system of ODEs, as given in (4). If you
wish to compute the solution of a system of PDEs only (i.e., ncode = 0), odedef must be the
dummy function d03pek. (d03pek is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

[NP3660/8] d03plc.9

do3plc

NAG C Library Manual

d03plc.10

void odedef (Integer mpde, double t, Integer ncode, const double Vv[],

10:

11:

const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double r[]1, Integer *ires,
Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable ¢.

ncode — Integer Input

On entry: the number of coupled ODEs in the system.

v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2,...,ncode.
vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.
nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

xi[nxi] — const double Input

On entry: xi[i — 1] contains the ODE/PDE coupling point, ;, for i = 1,2,..., nxi.

ucp[npde x nxi] — const double Input

On entry: ucp[npde x j + i] contains the value of U,(x, ¢) at the coupling point x = &, for
i=1,2,...,npde; j=1,2,... nxi.

ucpx[npde X nxi] — const double Input
. . . aUz (xa t) . .
On entry: ucpx[npde x j + i] contains the value of o at the coupling point x = &,
X
fori=1,2,...,npde; j =1,2,... nxi
ucpt[npde x nxi] — const double Input
. oU; . .

On entry: ucpt[npde X j + i] contains the value of atl at the coupling point x = ¢;, for

i=1,2,...,npde; j =1,2,... nxi.

r[ncode] — double Output
On exit: r[i — 1] must contain the ith component of R, for i = 1,2,...,ncode, where R is
defined as
R=L—-MV —NU;, (10)
or
R=-MV —NU;. (11)

The definition of r is determined by the input value of ires.

[NP3660/8]

d03 — Partial Differential Equations d03plc

12: ires — Integer * Input/Output

On entry: the form of r that must be returned in the array r. If ires = 1, then equation

(10) above must be used. If ires = —1, then the equation (11) above must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the

integration function to take certain actions as described below:

ires =2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER _STOP.

ires =3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d cd ode (d03plc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

13: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to odedef.

user — double *

iuser — Integer *

p — Pointer
The type Pointer will be void *. Before calling nag pde parab 1d cd ode
(d03plc) these pointers may be allocated memory by the user and initialized with
various quantities for use by odedef when called from nag pde parab _1d cd ode
(d03plc).

12: nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode = 0, nxi = 0;
if ncode > 0, nxi > 0.

13: xi[dim| — const double Input

Note: the dimension, dim, of the array xi must be at least max (1, nxi).

On entry: xi[i — 1], for i = 1,2,...,nxi, must be set to the ODE/PDE coupling points.

Constraint: x[0] < xi[0] < xi[l] < --- < xi[nxi — 1] < x[npts — 1].

14: neqn — Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn = npde X npts + ncode.

15: rtol[dim| — const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol = 1 or 2;
neqn when itol = 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtoli — 1] > 0 for all relevant i.

[NP3660/8]

d03plc.11

d03ple

16:

17:

19:

atol[dim| — const double
Note: the dimension, dim, of the array atol must be at least

1 when itol = 1 or 3;
neqn when itol = 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol[i — 1] > 0 for all relevant i.

itol — Integer

NAG C Library Manual

Input

Input

On entry: a value to indicate the form of the local error test. If e¢; is the estimated local error for
uli — 1], for i=1,2,...,neqn, and | || denotes the norm, then the error test to be satisfied is
lle;]| < 1.0. itol indicates to nag_pde parab_1d_cd ode (d03plc) whether to interpret either or both
of rtol and atol as a vector or scalar in the formation of the weights w; used in the calculation of the

norm (see the description of the argument norm below):

itol rtol atol w;

1 scalar scalar rtol[0] x |u[i — 1]| + atol[0]

2 scalar vector rtol[0] x |u[i — 1]| + atol[i — 1]

3 wvector scalar rtol[i — 1] x |u[i — 1]| + atol[0]

4 wvector vector rtol[i — 1] x |u[i — 1]| 4 atol[i — 1]

Constraint: 1 < itol < 4.

norm — Nag NormType
On entry: the type of norm to be used.
norm = Nag_OneNorm
Averaged L; norm.
norm = Nag_TwoNorm

Averaged L, norm.

Input

If U,om denotes the norm of the vector u of length neqn, then for the averaged L; norm

neqn

U = —1]/w;
norm neqnz ufi —1]/w;,

i=1

and for the averaged L, norm

neqn

> (i —1]/w;)*.

i=1

1
neqn

l]nonn =

See the description of argument itol for the formulation of the weight vector w.

Constraint: norm = Nag_OneNorm or Nag_TwoNorm.

laopt — Nag LinAlgOption
On entry: the type of matrix algebra required.
laopt = Nag_LinAlgFull
Full matrix methods to be used.
laopt = Nag_LinAlgBand

Banded matrix methods to be used.

d03plc.12

Input

[NP3660/8]

d03 — Partial Differential Equations d03plc

20:

laopt = Nag_LinAlgSparse
Sparse matrix methods to be used.
Constraint: laopt = Nag_LinAlgFull, Nag LinAlgBand or Nag_ LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present
(ncode = 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

algopt[30] — const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt[0] should be set to 0.0. Default values will also be used for any
other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt[0]
Selects the ODE integration method to be used. If algopt[0] = 1.0, a BDF method is used
and if algopt[0] = 2.0, a Theta method is used. The default is algopt[0] = 1.0.

If algopt[0] = 2.0, then algopt[i], for i = 1,2,3 are not used.

algopt][1]
Specifies the maximum order of the BDF integration formula to be used. algopt[l1] may be
1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt[2] = 1.0 a modified Newton iteration is used and if
algopt[2] = 2.0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt[2] = 1.0.

algopt[3]

Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
P;;=0.0, for j=1,2,...,npde for some i or when there is no V;(t) dependence in the
coupled ODE system. If algopt[3] = 1.0, then the Petzold test is used. If algopt[3] = 2.0,
then the Petzold test is not used. The default value is algopt[3] = 1.0.

If algopt[0] = 1.0, then algopt[i], for i = 4,5,6 are not used.

algopt[4]
Specifies the value of Theta to be used in the Theta integration method.
0.51 < algopt[4] < 0.99. The default value is algopt[4] = 0.55.

algopt[5]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt[5] = 1.0, a modified Newton iteration is used and if
algopt[5] = 2.0, a functional iteration method is used. The default value is algopt[5] = 1.0.

algopt|[6]

Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt[6] = 1.0,
then switching is allowed and if algopt[6] = 2.0, then switching is not allowed. The default
value is algopt[6] = 1.0.

algopt[10]

Specifies a point in the time direction, 7, beyond which integration must not be attempted.
The use of ¢ is described under the argument itask. If algopt[0] # 0.0, a value of 0.0 for

[NP3660/8] d03plc.13

d03plc NAG C Library Manual

21:

22:

algopt[10], say, should be specified even if itask subsequently specifies that ¢, will not be
used.

algopt[11]
Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt[11] should be set to 0.0.

algopt[12]
Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt[12] should be set to 0.0.

algopt[13]
Specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then the
initial step size is calculated internally.

algopt[14]
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt[14] = 0.0, then no limit is imposed.

algopt[22]

Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U, U,, ¥ and V. If algopt[22] = 1.0, a modified Newton iteration is
used and if algopt[22] =2.0, functional iteration is used. The default value is
algopt[22] = 1.0.

algopt[28] and algopt[29] are used only for the sparse matrix algebra option, i.e.,
laopt = Nag_LinAlgSparse.

algopt[28]

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0.0 < algopt[28] < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt[28] lies outside the range
then the default value is used. If the functions regard the Jacobian matrix as numerically
singular, then increasing algopt[28] towards 1.0 may help, but at the cost of increased fill-in.
The default value is algopt[28] = 0.1.

algopt[29]

Used as the relative pivot threshold during subsequent Jacobian decompositions (see
algopt[28]) below which an internal error is invoked. algopt[29] must be greater than zero,
otherwise the default value is used. If algopt[29] is greater than 1.0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian matrix is found to be
numerically singular (see algopt[28]). The default value is algopt[29] = 0.0001.

rsave[lrsave] — double Communication Array
If ind = 0, rsave need not be set on entry.

If ind = 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

Irsave — Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag pde parab_1d cd ode (d03plc) is called. Its size depends on the type of matrix algebra
selected:

if laopt = Nag_LinAlgFull, lIrsave > neqn x neqn + neqn + nwkres + lenode;
if laopt = Nag_LinAlgBand, Irsave > (3 x mlu + 1) X neqn + nwkres + lenode;
if laopt = Nag_LinAlgSparse, Irsave > 4 x neqn + 11 x neqn/2 + 1 4+ nwkres + lenode;

where

d03plc.14 [NP3660/8]

d03 — Partial Differential Equations d03plc

23:

24:

25:

mlu = the lower or upper half bandwidths, and
mlu = 3 x npde — 1, for PDE problems only, and
mlu = neqn — 1, for coupled PDE/ODE problems.

nwkres = npde X (2 X npts + 6 x nxi + 3 x npde + 26) + nxi + ncode + 7 X npts + 2,
when ncode > 0 and nxi > 0, and

nwkres = npde x (2 X npts + 3 x npde + 32) + ncode + 7 x npts + 3, when ncode > 0
and nxi = 0, and

nwkres = npde x (2 x npts + 3 x npde + 32) + 7 x npts + 4, when ncode = 0.

lenode = (6 + int(algopt[1])) x neqn + 50, when the BDF method is used, and
lenode = 9 x neqn + 50, when the Theta method is used.

Note: when laopt = Nag_LinAlgSparse, the value of Irsave may be too small when supplied to the
integrator. An estimate of the minimum size of Irsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code = NE_INT 2.

isave[lisave] — Integer Communication Array

If ind = 0, isave need not be set.

If ind = 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular the following components of the array isave
concern the efficiency of the integration:

isave[0]
Contains the number of steps taken in time.
isave[l]

Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave[2]
Contains the number of Jacobian evaluations performed by the time integrator.

isave[3]
Contains the order of the BDF method last used in the time integration, if applicable. When
the Theta method is used isave[3] contains no useful information.

isave[4]

Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

lisave — Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag pde parab _1d cd ode (d03plc) is called. Its size depends on the type of matrix algebra
selected:

if laopt = Nag_LinAlgFull, lisave > 24;
if laopt = Nag_LinAlgBand, lisave > neqn + 24;
if laopt = Nag_LinAlgSparse, lisave > 25 X neqn + 24.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns
with fail.code = NE_INT 2.

itask — Integer Input

On entry: the task to be performed by the ODE integrator.

[NP3660/8] d03plc.15

d03plc NAG C Library Manual

26:

27:

28:

itask = 1
Normal computation of output values u at ¢ = tout (by overshooting and interpolating).
itask = 2
Take one step in the time direction and return.
itask =3
Stop at first internal integration point at or beyond ¢ = tout.
itask = 4

Normal computation of output values u at ¢t = tout but without overshooting ¢ = ¢.; where
tuie 18 described under the argument algopt.

itask =5

Take one step in the time direction and return, without passing ¢, where 7. is described
under the argument algopt.

Constraint: 1 < itask < 5.

itrace — Integer Input
Stop at first internal integration point at or beyond ¢.

On entry: the level of trace information required from nag pde parab 1d cd ode (d03plc) and the
underlying ODE solver. itrace may take the value —1, 0, 1, 2, or 3.

itrace = —1

No output is generated.
itrace =0

Only warning messages from the PDE solver are printed .
itrace > 0

Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < —1, then —1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.
ind — Integer * Input/Output
On entry: must be set to 0 or 1.
ind =0

Starts or restarts the integration in time.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag pde parab 1d cd ode (d03plc).

Constraint: 0 < ind < 1.

On exit: ind = 1.

d03plc.16 [NP3660/8]

d03 — Partial Differential Equations d03plc

29: comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

30: saved — Nag D03 Save * Communication Structure
Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).
saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

31: fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_FAILED DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires = 3 in pdedef, numflx, bndary, or odedef.

NE_FAILED START

atol and rtol were too small to start integration.

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts = (value).

Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts = (value).
NE_INT
On entry, ind is not equal to 0 or 1: ind = (value).
ires set to an invalid value in call to pdedef, numflx, bndary, or odedef.
On entry, itask is not equal to 1, 2, 3, 4 or 5: itask = (value).
On entry, itol is not equal to 1, 2, 3, or 4: itol = (value).

On entry, ncode = (value).
Constraint: ncode > 0.

On entry, npde = (value).
Constraint: npde > 1.

On entry, npts = (value).
Constraint: npts > 3.

On entry, nxi = (value).
Constraint: nxi > 0.

[NP3660/8] d03plec.17

d03plc NAG C Library Manual

NE_INT 2
On entry, corresponding elements atol[i — 1] and rtolj — 1] are both zero. i = (value), j = (value).
On entry, lisave is too small: lisave = (value). Minimum possible dimension: (value).
On entry, Irsave is too small: Irsave = (value). Minimum possible dimension: (value).

When using the sparse option lisave or Irsave is too small: lisave = (value), Irsave = (value).

NE_INT 4

On entry, neqn is not equal to npde x npts + ncode: neqn = (value), npde = (value),
npts = (value), ncode = (value).

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt[14] has been exceeded.
algopt[14] = (value).

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x badly ordered: = (value), x[i— 1] = (value), j= (value),
x[j — 1] = (value).

On entry, xi[i] < xi[i — 1]: i = (value), xi[i] = (value), xi[i — 1] = (value).
NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL_2

On entry, at least one point in xi lies outside [x[0],x[npts — 1]]: x[0] = (value),
x[npts — 1] = (value).

On entry, tout — ts is too small: tout = (value), ts = (value).

On entry, tout < ts: tout = (value), ts = (value).
NE_REAL_ARRAY

On entry, atol[i — 1] < 0.0: i = (value), atol[i — 1] = (value).

On entry, rtol[i — 1] < 0.0: i = (value), rtol[i — 1] = (value).
NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

The functions P, D, or C appear to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires = 2 has been set in pdedef, numflx, bndary, or odedef.
Integration is successful as far as ts: ts = (value).

d03plc.18 [NP3660/8]

d03 — Partial Differential Equations d03plc

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag pde parab_1d cd ode (d03plc) controls the accuracy of the integration in the time direction but not
the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh
points and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the
effect of varying the accuracy arguments, atol and rtol.

8 Further Comments

nag pde parab_1d cd ode (d03plc) is designed to solve systems of PDEs in conservative form, with
optional source terms which are independent of space derivatives, and optional second-order diffusion
terms. The use of the function to solve systems which are not naturally in this form is discouraged, and
you are advised to use one of the central-difference schemes for such problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small error
tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum time
step should be imposed using algopt[12]. It is worth experimenting with this argument, particularly if the
integration appears to progress unrealistically fast (with large time steps). Setting the maximum time step
to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested. For a given
system and a fixed accuracy it is approximately proportional to neqn.

9 Example

For this function two examples are presented, with a main program and two example problems given in the
functions ex1 and ex2.

Example 1 (ex1)

This example is a simple first-order system with coupled ODEs arising from the use of the characteristic
equations for the numerical boundary conditions.

The PDEs are

oU, oU, oU,
2 —

o T TP 0

0Uy LU, Uy _ o

ot Ox Ox
for x € [0,1] and z > 0.
The PDEs have an exact solution given by
Ui, 1) =f(x=3t) + glx + 1), Us(x, 1) = f(x = 3t) —g(x + 1),
where f(z) = exp(nz) sin(27nz), g(z) = exp(—2nz) cos(27z).
The initial conditions are given by the exact solution.

The characteristic variables are W, = U; — U, and W, = U; + U,, corresponding to the characteristics
given by dx/dt = —1 and dx/dt = 3 respectively. Hence we require a physical boundary condition for 7,
at the left-hand boundary and for W, at the right-hand boundary (corresponding to the incoming

[NP3660/8] d03plc.19

d03plc NAG C Library Manual

characteristics), and a numerical boundary condition for W at the left-hand boundary and for W, at the
right-hand boundary (outgoing characteristics).

The physical boundary conditions are obtained from the exact solution, and the numerical boundary
conditions are supplied in the form of the characteristic equations for the outgoing characteristics, that is

ow, ow, _
ot Ox
at the left-hand boundary, and
ow, oW,
3—4—==0
o ox

at the right-hand boundary.
In order to specify these boundary conditions, two ODE variables V; and V', are introduced, defined by

Vl(t) = Wl(oat) = Ul(ovt) - UZ(Oat)s
Vy(t) = W,(1,8) = U, (1,1) + Uy(1,1).

The coupling points are therefore at x =0 and x = 1.

The numerical boundary conditions are now

. ow,
Vi———=0
oo
at the left-hand boundary, and
. ow
Vy+3—2=0
Ox

at the right-hand boundary.

The spatial derivatives are evaluated at the appropriate boundary points in the bndary function using one-
sided differences (into the domain and therefore consistent with the characteristic directions).

The numerical flux is calculated using Roe’s approximate Riemann solver (see Section 3 for details),
giving
3U , —Uig +3Uy + Uy

F=1 .

Example 2 (ex2)

This example is the standard shock-tube test problem proposed by Sod (1978) for the Euler equations of
gas dynamics. The problem models the flow of a gas in a long tube following the sudden breakdown of a
diaphragm separating two initial gas states at different pressures and densities. There is an exact solution
to this problem which is not included explicitly as the calculation is quite lengthy. The PDEs are

atax - °
%Jr%(%Jr%(v—l)(e—%)) = 0,

where p is the density; m is the momentum, such that m = pu, where u is the velocity; e is the specific
energy; and v is the (constant) ratio of specific heats. The pressure p is given by

p=(7—1)(e—p7u2>-

The solution domain is 0 <x <1 for 0 < ¢ < 0.2, with the initial discontinuity at x = 0.5, and initial
conditions

d03plc.20 [NP3660/8]

d03 — Partial Differential Equations d03plc

p(x,0) =1, m(x,0) =0, e(x,0)=2.5, for x < 0.5,
p(x,0) =0.125, m(x,0) =0, e(x,0)=0.25, for x > 0.5.

The solution is uniform and constant at both boundaries for the spatial domain and time of integration
stated, and hence the physical and numerical boundary conditions are indistinguishable and are both given
by the initial conditions above. The evaluation of the numerical flux for the Euler equations is not trivial;
the Roe algorithm given in Section 3 cannot be used directly as the Jacobian is nonlinear. However, an
algorithm is available using the argument-vector method (see Roe (1981)), and this is provided in the
utility function nag pde parab 1d euler roe (dO3puc). An alternative Approxiate Riemann Solver using
Osher’s scheme is provided in nag pde parab 1d_euler osher (d03pvc). Either
nag pde parab_1d euler roe (d03puc) or nag pde parab 1d euler osher (d03pvc) can be called from
the user-supplied numflx function.

9.1 Program Text

/* nag_pde_parab_1d_cd_ode (dO3plc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx0l.h>
#include <math.h>

/* Structure to communicate with user-supplied function arguments =*/
struct user

double elo, ero, gamma, rlo, rro;

}i

static void pdedef (Integer, double, double, const doublel],
const double[], Integer, const doublel],
const double[], doublel[]l, doublel]l, doublell],
double[], Integer *, Nag_Comm *);

static void bndryl(Integer, Integer, double, const doublel[],
const double[], Integer, const doublel],
const double[], Integer, double[], Integer =*,
Nag_Comm *) ;

static void bndry2(Integer, Integer, double, const doublel[],
const double[], Integer, const doublel],
const double[], Integer, double[], Integer =*,
Nag_Comm *) ;

static void nmflx1l(Integer, double, double, Integer, const doublel[],
const double[], const double[], double[], Integer =,
Nag_Comm *, Nag_DO3_Save *);

static void nmflx2(Integer, double, double, Integer, const doublel[],
const double[], const double[], double[], Integer *,
Nag_Comm *, Nag_DO3_Save x);

static void odedef (Integer, double, Integer, const double[], const doublel],
Integer, const double[], const doublel],
const double [], const doublel[], doublell,
Integer *, Nag_Comm *);

static void initl(double, double *, Integer, double *, Integer, Integer);

static void init2(Integer, Integer, double #*, double *, Nag_Comm *);

static void exact(double, double *, Integer, const double *, Integer);

static int exl(void), ex2(void);

#define P(I,J) plnpde*((J)-1)+(I)-1]
#define UCP(I,J) ucplnpde*((J)-1)+(I)-11]
#define UE(I,J) uelnpde*((J)-1)+(I)-1]
#define U(I,J) ulnpdex((J)-1)+(I)-1]

[NP3660/8] d03ple.21

d03plc NAG C Library Manual

#define UOUT(I,J) uout[npdex*((J)-1)+(I)-1]

int main(void)
{
Vprintf ("nag_pde_parab_1d_cd_ode (d03plc) Example Program Results\n");
ex1();
ex2();
return O;

int ex1(void)
{
const Integer npde=2, npts=141, ncode=2, nxi=2, negn=npde*npts+ncode,
outpts=8, lrsave=11000, lisave=15700;
double tout, ts;
Integer exit_status, i, ii, ind, itask, itol, itrace, j, nop;
double *algopt=0, *atol=0, *rsave=0, *rtol=0, #*u=0, #*ue=0,
*uyout=0, *x=0, *xi=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_DO03_Save saved;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
! (atol = NAG_ALLOC(1, double)) ||
! (rsave = NAG_ALLOC(lrsave, double)) ||
! (rtol = NAG_ALLOC(1, double)) ||
! (u = NAG_ALLOC (neqgn, double)) ||
! (ue = NAG_ALLOC (npde*outpts, double)) ||
! (uout = NAG_ALLOC (npde*outpts, double)) ||
! (x = NAG_ALLOC(npts, double)) ||
! (xi = NAG_ALLOC(nxi, double)) ||
! (xout = NAG_ALLOC (outpts, double)) ||
! (isave = NAG_ALLOC(lisave, Integer)))
{

Vprintf ("Allocation failure\n");

exit_status = 1;

goto END;

}

Vprintf ("\n\nExample 1\n\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;

itol = 1;

atol[0] = le-5;
rtol[0] = 2.5e-4;

Vprintf (" npts = %414", npts);
Vprintf (" atol %10.3e", atol[0]);
Vprintf (" rtol %$10.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i =0
x1[0]
x1[1]

i < npts; ++1i) x[i] = i/(npts-1.0);

’

’

O O ~

0.
1.
/* Set initial values */

ts = 0.0;
initl(ts, u, npde, x, npts, ncode);

ind = 0;

itask 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

d03plc.22 [NP3660/8]

d03 — Partial Differential Equations d03plc

/* Theta integration */
algopt[0] = 1.0;

/* Sparse matrix algebra parameters x/

algopt[28]

0.1;
algopt[29] 1

1
.1;

tout = 0.5;
/* nag_pde_parab_1d_cd_ode (d03plc).
* General system of convection-diffusion PDEs with source
* terms in conservative form, coupled DAEs, method of
* lines, upwind scheme using numerical flux function based
* on Riemann solver, one space variable
*
/
nag_pde_parab_1d_cd_ode(npde, &ts, tout, pdedef, nmflxl, bndryl, u, npts, x,
ncode, odedef, nxi, xi, negn, rtol, atol, itol,
Nag_OneNorm, Nag_LinAlgSparse, algopt, rsave, lrsave,
isave, lisave, itask, itrace, 0, &ind, &comm, &saved,
s&fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag _pde_parab_1d_cd_ode (d03plc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Set output points */

nop = 0;
for (i = 0; i < npts; 1 += 20)
{
xout [nop] = x[1i];
++nop;
}
Vprintf (" t = %6.3f\n\n", ts);
Vprintf (" X Approx ul Exact ul");
Vprintf (" Approx u2 Exact u2\n\n");

for (i = 1; i <= nop; ++i)

{
ii = (1-1)*20+1;
j = npde*(li - 1);
UouT(1l, i) = uljl;
UOUT(2, i) = ulj + 11;
}

/* Check against exact solution */

exact (tout, ue, npde, xout, nop);
for (i = 1; i <= nop; ++1i)
{
Vprintf (" %10.4f", xout[i
Vprintf (" %10.4f", UOUT(1

(-11);

(, 1
Vprintf (" %10.4f", UE(1,1i));

(,1

(, 1

]
)) i
Vprintf (" %10.4f", UOUT(2
Vprintf (" %10.4f\n", UE(2
}
Vprintf ("\n")

1) ;
') ;

Vprintf
Vprintf
Vprintf
Vprintf
END:

if (algopt) NAG_FREE (algopt) ;

' Number of integration steps in time = %61d\n", isavel[O0]);
" Number of function evaluations = %61d\n", isave[l]);
Number of Jacobian evaluations =%6ld\n", isave[2]);

' Number of iterations = %61d\n\n", isavel[4]);

(
(
(Il
(

[NP3660/8] d03plc.23

d03ple
if (atol) NAG_FREE (atol);
if (rsave) NAG_FREE (rsave) ;
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE (u);
if (ue) NAG_FREE (ue) ;
if (uout) NAG_FREE (uout) ;
if (x) NAG_FREE (x);
if (xi) NAG_FREE (xi);
if (xout) NAG_FREE (xout) ;
if (isave) NAG_FREE (isave) ;

return exit_status;

3

static void pdedef (Integer npde,

double t, double
const double ux[], In
const double vdotl],
double d[], double s|
Nag_Comm *comm)

{
Integer i, Jj;
for (i = 1; i <= npde; ++1i)
{
c[i-1] = 1.0;
d[i-1] = 0.0;
s[i-1] = 0.0;
for (j = 1; j <= npde; ++j)
{
if (1 == 3)
{
P(i,]) = 1.0;
} else {
P(i, j) = 0.0;
}
}
¥
return;
}

static void bndryl(Integer npde,

Integer npts, do
const double ul], Int
const double vdot[],

NAG C Library Manual

x, const double ull,
teger ncode,
double pl[], double c[],

], Integer =*ires,

uble t, const double xI[1],
eger ncode,

Integer ibnd, double gl[],

Integer *ires, Nag_Comm #*comm)

{
double dudx;
double *ue=0;
/* Allocate memory */
if (!(ue = NAG_ALLOC(npde, double)))
{
Vprintf ("Allocation failure\n");
goto END;
}
if (ibnd == 0) {
exact(t, ue, npde, &x[0], 1);
gl[0] = U(1, 1) + U(2, 1) - UE(1, 1) - UE(2, 1
dudx = (U(1, 2) - U(2, 2) - U(1, 1) + U(2, 1)
g[l] = vdot[0] - dudx;
} else {
exact(t, ue, npde, &x[npts-11, 1);
g[0] = U(1l,npts) - U(2,npts) - UE(1, 1) + UE(
dudx = (U(l,npts) + U(2,npts) - U(l,npts-1) -
U(2,npts-1))/(x[npts-1] - x[npts-21);
gll] = vdot[1l] + 3.0*dudx;
b
END:
if (ue) NAG_FREE (ue);
return;

d03plc.24

2, 1);

[NP3660/8]

const double vI[],

const double vI[],

d03 — Partial Differential Equations

}

do3plc

static void nmflxl(Integer npde, double t, double x, Integer ncode,

{

b

const double v[], const double uleftl[],
const double uright[], double flux[], Integer =*ires,
Nag_Comm *comm, Nag_DO03_Save #*saved)

flux[0] = 0.5%(3.0*uleft[0] - uright[0] + 3.0*uleft[1l] + uright[1l]);
flux[1l] = 0.5%(3.0*uleft[0] + uright[0] + 3.0*uleft[1l] - uright[1l]);
return;

static void odedef (Integer npde, double t, Integer ncode, const double vI[],

{

3

const double vdot[], Integer nxi, const double xil],
const double ucpl], const double ucpxI[],

const double ucpt[], double r[], Integer *ires,
Nag_Comm *comm)

if (*xires == -1)
{

r[0]

r[1]

} else

r[0]

r[1]

[| I
(@)
(@)

1]
<
il

I
c
a
g
[
N

I
G
a
g
N
N

}

return;

static void exact(double t, double *u, Integer npde,

{

3

const double *x, Integer npts)
/* Exact solution (for comparison and b.c. purposes) */

double f, g;
Integer ij;

for (i = 1; i <= npts; ++1i)

{
f = exp(nag_pi*(x[i-1] - 3.0*t))*sin(2.0*nag_pi*(x[i-1] - 3.0*t));
g = exp(-2.0%nag_pi*(x[i-1] + t))*cos(2.0*nag _pix(x[i-1] + t));
u(l, i) = £ + g;
u(2, i) = £ - g;
}
return;

static void initl(double t, double *u, Integer npde, double =*x,

{

Integer npts, Integer ncode)
/* Initial solution */

double f, g;
Integer i, Jj, neqn;

negn = npde*npts+ncode;

j = 0;
for (i = 0; i < npts; ++1i)
{
f = exp(nag_pi*(x[i] - 3.0*t))*sin(2.0*nag_pi*(x[i] - 3.0*t));
g = exp(-2.0*nag_pi*(x[i] + t))*cos(2.0*nag_pix(x[i] + t));
u[]] =f + g;
ulj+1] = £ - g;
J o+= 2;
}
ulnegn-2] = ul0] - ull];
u[negn-1] = ul[negn-3] + ul[negn-4];
return;

int ex2(void)

{

[NP3660/8]

d03plc.25

d03ple

const Integer npde=3, npts=141, ncode=0,

outpts=8, lisave=neqn+24, lrsave=16392;

double d, p, tout, ts, v;

Integer exit_status, i, ind, it, itask, itol, itrace,
double *algopt=0, *atol=0, *rsave=

*x=0, *x1=0;
Integer xisave=0;
NagError fail;
Nag_Comm comm;
Nag_DO03_Save saved;
struct user data;

/* Allocate memory */

if (!
atol = NAG_ALLOC(1l, double)

rtol = NAG_ALLOC(1, double)
ue = NAG_ALLOC (npde*outpts,
x = NAG_ALLOC (npts, double)
xi1 = NAG_ALLOC(1, double))

i

{

Vprintf ("Allocation failure\n"

exit_status = -1;
goto END;
}

Vprintf ("\n\nExample 2\n\n");
/* Skip heading in data file */
Vscanf ("$*x[*\n] ");

INIT_FAIL(fail);
exit_status = 0;

/* Problem parameters */

data.elo = 2.5;
data.ero = 0.25;
data.gamma = 1.4;

data.rlo = 1.0;
data.rro = 0.125;
comm.p = (Pointer)

itrace = 0;

(
(
(
(
(u = NAG_ALLOC (npde*npts, double))
(
(
(
(

0, *rtol=0, *u=0,

algopt = NAG_ALLOC(30, double)) ||

) 1

rsave = NAG_ALLOC(lrsave, double)) ||

) 1

I
double)) ||
) 1
I

isave = NAG_ALLOC (447, Integer)))

)i

itol = 1;

atol[0] = 0.005;

rtol[0] = 5e-4;

Vprintf (" gamma =%6.3f", data.gamma) ;
Vprintf (" elo =%6.3f", data.elo);
Vprintf (" ero =%6.3f", data.ero);
Vprintf (" rlo =%6.3f", data.rlo);
Vprintf (" rro =%6.3f\n\n", data.rro);
Vprintf (" npts = %41d", npts);
Vprintf (" atol = %10.3e", atol[0]);
Vprintf (" rtol = %10.3e\n\n", rtol[0]);

/* Initialise mesh =*/

for (i =

0; i < npts; ++i) x[i] =

/* Initial values of variables */

init2(npde, npts, x, u,

xi[0] =
ind = 0;

d03plc.26

&comm) ;

i/(npts-1.0);

nxi=0, negn=npde#*npts+ncode,

NAG C Library Manual

[NP3660/8]

d03 — Partial Differential Equations d03plc

itask = 1;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] 2.0;
algopt[5] = 2.0;
algopt[6] = 2.0;

/* Max. time step */

algopt[12] = 0.005;

ts = 0.0;
Vprintf (" X APPROX d EXACT d APPROX v EXACT v APPROX p EXACT p\n");
for (it = 0; it < 2; ++it)

{

tout = 0.1%(it+1);

/* nag_pde_parab_1d_cd_ode (d03plc), see above. */

nag_pde_parab_1ld_cd_ode(npde, &ts, tout, d03plp, nmflx2, bndry2, u, npts,
x, ncode, d03pek, nxi, xi, negn, rtol, atol, itol,
Nag_TwoNorm, Nag_LinAlgBand, algopt, rsave,
lrsave, isave, lisave, itask, itrace, 0, &ind,
&comm, &saved, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_pde_parab_1d_cd_ode (d03plc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n t = %6.3f\n\n", ts);

/* Read exact data at output points */

Vscanf (" $x["\n] ");
for (i = 1; i <= 8; ++1i)
{

Vscanf ("s1f", &UE(1, i));

Vscanf ("s1f", &UE(2, 1i));

Vscanf ("$1f", &UE(3, 1i));
b

/* Calculate density, velocity and pressure */

k = 0;
for (i = 29; i <= npts-14; i += 14)
{
d =0(1, i);
v =U(2, 1) / d;
p = d*(data.gamma-1.0)*(U(3, 1i)/d - 0.5*v*v);

Vprintf ("$7.4f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n",
)

X[l_l]r d, UE(llk)l \ UE(2Ik r Py UE(?)rk));
¥

}
Vprintf ("\n");
Vprintf (" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf (" Number of function evaluations = %61d\n", isavel[ll]);
Vprintf (" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf (" Number of iterations = %6ld\n\n", isavel[4]);
END:

[NP3660/8] d03plc.27

d03plc NAG C Library Manual

if (algopt) NAG_FREE (algopt);
if (atol) NAG_FREE (atol);
if (rsave) NAG_FREE (rsave) ;

(
(
(
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE (u);
if (ue) NAG_FREE (ue);
if (x) NAG_FREE (x) ;
if (xi) NAG_FREE (x1i);
if (isave) NAG_FREE (isave) ;
return exit_status;

¥
static void init2(Integer npde, Integer npts, double #*x, double =*u,

Nag_Comm #*comm)

{
Integer i, J;
struct user *data = (struct user *)comm->p;
j = 0;
for (i = 0; i < npts; ++1i)
{
if (x[1] < 0.5) {
ulj] = data->rlo;
ulj+1] = 0.0;
ul[j+2] = data->elo;
} else if (x[i] == 0.5) {
ulj] = 0.5*(data->rlo + data->rro);
ulj+1] = 0.0;
ulj+2] = 0.5%x(data->elo + data->ero);
} else {
uljl] = data->rro;
ul[j+1] = 0.0;
ul[j+2] = data->ero;
}
Jj+=3;
}
return;
}

static void bndry2(Integer npde, Integer npts, double t, const double x[],
const double ul[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer xires, Nag_Comm #*comm)

{
struct user #*data = (struct user *)comm->p;
if (ibnd == 0)
{
g[0] = U(1, 1) - data->rlo;
glll = U0(2, 1);
gl2] = U(3, 1) - data->elo;
} else {
g[0] = U(1, npts) - data->rro;
gll] = U(2, npts);
gl2] = U(3, npts) - data->ero;
}
return;
}

static void nmflx2(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleftl[],
const double uright[], double flux[], Integer =*ires,
Nag_Comm *comm, Nag_DO03_Save #*saved)

char solver;

NagError fail;

struct user *data = (struct user #*)comm->p;
INIT FAIL(fail);

solver = 'R’;

if (solver == 'R’) {

d03plc.28 [NP3660/8]

d03 — Partial Differential Equations d03plc

/* ROE SCHEME */

/* nag_pde_parab_1d_euler_roe (dO3puc).
* Roe’s approximate Riemann solver for Euler equations in
* conservative form, for use with nag_pde_parab_1d_cd
* (dO3pfc), nag_pde_parab_1d_cd_ode (dO03plc) and
* nag_pde_parab_1d_cd_ode_remesh (dO3psc)
*
/
nag_pde_parab_1d_euler_roe(uleft, uright, data->gamma, flux, saved, &fail);

} else {
/* OSHER SCHEME */

/* nag_pde_parab_1d_euler_osher (d03pvc).
* Osher’s approximate Riemann solver for Euler equations in
* conservative form, for use with nag_pde_parab_1d_cd
* (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) and
* nag_pde_parab_1d_cd_ode_remesh (dO3psc)
*
/
nag_pde_parab_1d_euler_osher (uleft, uright, data->gamma, Nag_OsherPhysical,
flux, saved, &fail);

¥

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_pde_parab_1d_euler_osher (dO3pvc).\n%s\n",
fail.message) ;

return;

9.2 Program Data

nag_pde_parab_1d_cd_ode (dO3plc) Example Program Data
d, v, p at selected output pts. For t = 0.1:

1.0000 0.0000 1.0000
1.0000 0.0000 1.0000
0.8775 0.1527 0.8327
0.4263 0.9275 0.3031
0.2656 0.9275 0.3031
0.1250 0.0000 0.1000
0.1250 0.0000 0.1000
0.1250 0.0000 0.1000
For t = 0.2:

1.0000 0.0000 1.0000
0.8775 0.1527 0.8327
0.6029 0.5693 0.4925
0.4263 0.9275 0.3031
0.4263 0.9275 0.3031
0.2656 0.9275 0.3031
0.2656 0.9275 0.3031
0.1250 0.0000 0.1000

9.3 Program Results

nag_pde_parab_1d_cd_ode (dO3plc) Example Program Results

Example 1
npts = 141 atol = 1.000e-05 rtol = 2.500e-04
t = 0.500
X Approx ul Exact ul Approx u2 Exact u2
0.0000 -0.0432 -0.0432 0.0432 0.0432

[NP3660/8] d03plc.29

1.000

NAG C Library Manual

.0000
.0231
.0176
.0224
.0825
.1039
.0001

r

ro = 0.125

APPROX p EXACT p

d03ple
0.1429 -0.0220 -0.0220 -0.0001
0.2857 -0.0200 -0.0199 -0.0232
0.4286 -0.0123 -0.0123 -0.0176
0.5714 0.0249 0.0245 0.0227
0.7143 0.0835 0.0827 0.0833
0.8571 0.1043 0.1036 0.10406
1.0000 -0.0010 -0.0001 -0.0008
Number of integration steps in time = 159
Number of function evaluations = 1156
Number of Jacobian evaluations = 16
Number of iterations = 415
Example 2
gamma = 1.400 elo = 2.500 ero = 0.250 1«rlo =
npts = 141 atol = 5.000e-03 rtol = 5.000e-04
X APPROX d EXACT d APPROX v EXACT v
t = 0.100
0.2000 1.0000 1.0000 -0.0000 0.0000 1
0.3000 1.0000 1.0000 -=-0.0000 0.0000 1
0.4000 0.8668 0.8775 0.1665 0.1527 0
0.5000 0.4299 0.4263 0.9182 0.9275 0
0.6000 0.2969 0.2656 0.9274 0.9275 0
0.7000 0.1250 0.1250 0.0000 0.0000 0
0.8000 0.1250 0.1250 -0.0000 0.0000 0
0.9000 0.1250 0.1250 -0.0000 0.0000 0
t = 0.200
0.2000 1.0000 1.0000 -=0.0000 0.0000 1
0.3000 0.8718 0.8775 0.1601 0.1527 0
0.4000 0.6113 0.6029 0.5543 0.5693 0
0.5000 0.4245 0.4263 0.9314 0.9275 0
0.6000 0.4259 0.4263 0.9277 0.9275 0
0.7000 0.2772 0.2656 0.9272 0.9275 0
0.8000 0.2657 0.2656 0.9276 0.9275 0
0.9000 0.1250 0.1250 -0.0000 0.0000 0
Number of integration steps in time = 170
Number of function evaluations = 411
Number of Jacobian evaluations = 1

Number of iterations =

d03plc.30

2

.0000
.0000
.8188
.3071
.3028
.1000
.1000
.1000

.0000
.8253
.5022
.3014
.3030
.3031
.3032
.1000

[eNeoNeoNeNeNeN -

[leNeoNeoNeoNeoNeNeN

.0000
.0000
.8327
.3031
.3031
.1000
.1000
.1000

.0000
.8327
.4925
.3031
.3031
.3031
.3031
.1000

[NP3660/8]

d03 — Partial Differential Equations

Figure 1
Solution to Example 1

VELOCI TY

DENSITY

PRESSURE

Figure 2
Solution to Example 2

do3plc

[NP3660/8]

d03plc.31 (last)

	d03plc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	ncode
	v
	vdot
	p
	c
	d
	s
	ires
	comm
	user
	iuser
	p

	numflx
	npde
	t
	x
	ncode
	v
	uleft
	uright
	flux
	ires
	comm
	user
	iuser
	p

	saved

	bndary
	npde
	npts
	t
	x
	u
	ncode
	v
	vdot
	ibnd
	g
	ires
	comm
	user
	iuser
	p

	u
	npts
	x
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	ucpt
	r
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL_2
	NE_REAL_ARRAY
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

